Mahadev Sunil Kumar

mahadevsunilkumar03@gmail.com +91 97467 26074 LinkedIn www.mahadevsunilkumar.com

Education

Amrita Vishwa Vidyapeetham (Amrita University)

Kollam, Kerala, India

B.Tech. in Computer Science, Specialization in Artificial Intelligence

Jun 2025

Thesis: Deep ScaleNet: A Novel Framework for Deploying Large Distributed CNNs

CGPA: 6.64/10

on Edge Devices

Advisor: Prof. Amitava Mukherjee

Loyola School Trivandrum, Kerala, India

Indian School Certificate (ISC), Computer Science & Mathematics

Jun 2021

Score: 96.7%

Loyola School Trivandrum, Kerala, India

Indian Certificate of Secondary Education (ICSE), Science

Jun 2019

Score: 90%

Research Interests

Optimization, Neuromorphic Systems, Computer Vision, Edge Computing

Research Experience

Undergraduate Student Researcher

August 2023 – June 2025

Project: SlimEdge: Lightweight Distributed DNN Deployment on Constrained Hardware

Supervisors: Dr. Amitava Mukherjee (BITS Dubai); Dr. Arnab Raha (Intel Corp); Dr. Debayan Das (IISc); Dr. Gopakumar G (Amrita University)

- Designed dynamic filter-pruning for CNNs under memory/latency constraints; extended to Multi-View CNNs with per-view importance estimation using XGBoost.
- Built **reward functions** combining accuracy preservation, model size, inference time, device memory caps, and per-view salience.
- Implemented single-view optimization with a **Genetic Algorithm**; scaled to all views using **NSGA-II** for multiobjective trade-offs across accuracy, size, and latency.
- Developed sampling strategies (importance- and device-aware) using Beta-distribution parameterizations for pruning vectors.
- Used root-finding (Newton–Raphson, Brentq, TOMS748) to solve budget-constraint equations and align pruning targets with device memory ceilings.
- Deployed and profiled on heterogeneous nodes (Raspberry Pi, NVIDIA Jetson Nano, Apple Silicon)
- Implemented **device-aware partitioning heuristics** for distributed inference; validated robustness via cross-device accuracy and latency variance analysis.

Research Intern, ISRO Inertial Systems Unit (IISU)

Aug 2023 – Oct 2023

Supervisors: Dr. Ouseph P. (IISU, ISRO) Dr. Durairaj R. (IISU, ISRO)

• Built a **YOLOv7-based system** for humanoid analogue-gauge reading; curated and annotated a custom dataset with variable lighting, glare, and dial geometries.

- Engineered post-processing for pointer-angle regression and scale normalization; achieved \sim 98% accuracy on held-out gauges; created an inference workflow for deployment.
- Deployed trained model on an NVIDIA Jetson as well as optimized the model using ONNX and TensorRT.

Publications

Preprints

1. Mahadev Sunil Kumar, Arnab Raha, Debayan Das, Gopakumar G, Amitava Mukherjee – *SlimEdge: Lightweight Distributed DNN Deployment on Constrained Hardware*, preprint, 2025. (ArXiv)

Research Projects

SlimEdge: Lightweight Distributed DNN Deployment on Constrained Hardware

Sep 2023 – Present

- Built a pruning + fine-tuning pipeline for MVCNN under user-set accuracy and model-size thresholds; achieved 1.2–5.0× faster inference on heterogeneous devices while meeting accuracy targets.
- Quantified per-view salience by evaluating **55,665** random 12-D pruning vectors and training an **XGBoost** regressor to predict accuracy; obtained view-importance scores with $R^2 = 0.96$ and used them to guide pruning.
- Defined device compute capacity as the **harmonic-normalized inverse** of per-device inference time; biased pruning toward slower devices to balance latency across the distributed system.
- Formulated a **multi-objective** search over accuracy, size, and latency with inequality constraints; solved with **NSGA-II** (200 generations) and selected the lowest-latency Pareto solution; included a **single-objective GA** fallback with a penalty function for infeasible regimes.

Speech Emotion Detection (LSTM)

May 2024 – Jun 2024

- Built MFCC and spectrogram pipelines; trained LSTM classifier for multi-class emotions; performed augmentation and class-imbalance handling.
- Evaluated with stratified splits; reported precision/recall/F1 per class and confusion matrices.

Reinforced Chess (DQN)

Feb 2024 – Jul 2024

- Implemented self-play DQN with episodic reward shaping and n-step returns; stabilized training with target networks and experience replay.
- Benchmarked against heuristic baselines; analyzed policy improvement curves and move-quality statistics.

SDN DDoS Detection (SVM)

Dec 2023 - Feb 2024

• Engineered flow-level features; trained SVM to detect DDoS in SDN settings; validated on held-out traffic traces.

Skin Disease CNN Oct 2023 – Dec 2023

• Built a custom 18-layer CNN for dermatology classification; normalized inputs, used label smoothing and early stopping; analyzed failure modes via Grad-CAM.

Teaching Experience

Teaching Assistant

May 2025 – Jun 2025

Corporate and Industrial Relations, Amrita University

Amritapuri, India

- Delivered sessions in **competitive programming, algorithms, and efficient coding** to the B.Tech. 2022–2026 batch; emphasis on complexity analysis, data structures, and problem patterns.
- Designed and taught *Code Hour*, a placement-oriented module covering greedy, DP, graph algorithms, recursion/backtracking, bit manipulation, and code hygiene.

• Mentored **143** students; created graded practice sets, solution walkthroughs, and rubric-based feedback to improve correctness and speed under time constraints.

Work Experience

Advanced Applications Engineering AnalystAccenture PLC

Bengaluru, India Oct 2025 – Present

Skills

Programming & Scripting: Python, C++, C, Shell (Zsh/Bash), MATLAB **ML & Deep Learning:** PyTorch, TensorFlow, Keras, scikit-learn, XGBoost

Optimization & Numerical Methods: CMA-ES, NSGA-II, Genetic Algorithms, Newton-Raphson, Brentq,

TOMS748

Model Compression & Edge Deployment: MVCNN pruning (per-view), distributed DNN partitioning,

resource-constrained inference

Distributed & Systems: Docker, OpenMPI, Linux server administration, SSH, SMB/NFS

Data & Scientific Computing: NumPy, Pandas, SciPy, Matplotlib, Jupyter

Experimentation & Reproducibility: structured logging, ablation studies, reproducible Docker/Conda

environments

Tooling: LaTeX (Elsevier/IEEE/Nature), Markdown

Specified Coursework

Core: Data Structures & Algorithms; Design & Analysis of Algorithms; Machine Learning; Deep Learning; Probability & Statistics; Linear Algebra; Optimization; Computer Networks; Operating Systems; Distributed Systems; Databases.

Online: Intro to LLMs in Python; Deep Learning for Text (PyTorch); Deep Learning for Images (PyTorch); RNNs for Language Modeling (Keras); Intermediate/Advanced ML (Coursera/Datacamp, 2023–2024).

Languages

English; Malayalam; Hindi; Latin